Albert Einstein Sir Isaac Newton
Einstein's hole argument (ps file , pdf file). The
popular account that dynamical spacetime is background
independent. This has important implications for
quantum gravity.






General Relativity and Loop Quantum Gravity

I am in the process of writing three books (UPDATED 2012):

Volume I: Advanced and Modern General Relativity (Volume I appendices).
Volume II: Loop Quantum Gravity (Volume II appendices).
Volume III: Advanced and Recent Developments in Loop Quantum Gravity (Volume III appendices).


Draft version with bibliographical notes incomplete!! By Ian Baynham (baynham_ian@hotmail.com)



Advanced and Modern General Relativity: Volume I pdf file , ps file , ps.gz file , (Complete file - draft version)

Contents ( ps file , pdf file)
Chapter 1: Classical GR, Einstein's hole argument and physical observables (1912-1916) ( ps file , pdf file) (draft version)
Chapter 2: Complete, Partial and Dirac Observables ( ps file , pdf file) (draft version)
Chapter 3: Black holes - Event, Isolated and Dynamical Horizons ( ps file , pdf file) (draft version)
Chapter 4: Cosmology ( ps file , pdf file) (draft version)
Chapter 5: Proof of the Hawking Penrose Singularity Theorems ( ps file , pdf file) (draft version)
Chapter 6: Consistent Discrete Classical GR ( ps file , pdf file) (draft version)
Chapter 7: Quantum Field Theory on Curved Spacetime ( ps file , pdf file) (draft version)
Chapter 8: Quantum General Relativity ( ps file , pdf file) (draft version)

Volume I: Appendices (drafts)

Loop Quantum Gravity: Volume II pdf file , ps file , ps.gz file(Complete file - draft version)

Contents ( ps file , pdf file)
Chapter 1: Classical GR, Einstein's hole argument and physical observables (1912-1916) ( ps file , pdf file) (draft version)
Chapter 2: The early beginnings (1984-1992) ( ps file , pdf file) (draft version)
Chapter 3: Formal developments (1992-2006) ( ps file , pdf file) (draft version)
Chapter 4: Dynamics : The Hamiltonian constraint and Spin foams ( ps file , pdf file) (draft version)
Chapter 5: Physical Applications of LQG: Black Hole Entropy and Loop Quantum Cosmology ( ps file , pdf file) (draft version)
Chapter 6: The Master Constraint (May 2003) ( ps file , pdf file) (draft version)
Chapter 7: The Semi-Classical Limit ( ps file , pdf file) (draft version)
Chapter 8: Extending standard quantum mechanics for background independent theories ( ps file , pdf file) (draft version)
Chapter 9: Towards background independent scattering amplitudes ( ps file , pdf file) (draft version)

Volume II: Appendices (drafts)

Advanced and Recent Developments in LQG: Volume III pdf file , ps file , ps.gz file , (Complete file - draft version)

Contents ( ps file , pdf file)
Chapter 1: Introduction ( ps file , pdf file) (draft version)
Chapter 2: Algebraic Quantum Gravity, Reduced Phase Space Quantisation and the Master Constraint Path Integral ( ps file , pdf file) (draft version)
Chapter 3: Semiclassical Analysis ( ps file , pdf file) (draft version)

Volume III: Appendices (drafts)

Appendices of All Books:

Volume I: Appendices (drafts)

Appendix A: Physics Glossary ( ps file , pdf file)
Appendix B: Mathematics Glossary ( ps file , pdf file)
Appendix C: Mathematics ( ps file , pdf file)
Appendix D: Constrained Hamiltonian Systmes, Dirac Observables and Constraint Algebra ( ps file , pdf file)
Appendix E: ADM and First order Formalism of Einstein's Theroy ( ps file , pdf file)
Appendix F: Some Functional Analysis ( ps file , pdf file)
Appendix G: Quantum Field Theory ( ps file , pdf file)
Appendix H: Details of Hawking's Calculation ( ps file , pdf file)
Bibliography ( ps file , pdf file)

Volume II: Appendices (drafts)

Appendix A: Physics Glossary ( ps file , pdf file)
Appendix B: Mathematics Glossary ( ps file , pdf file)
Appendix C: Mathematics ( ps file , pdf file)
Appendix D: Yang-Mills and Gauge Theory ( ps file , pdf file)
Appendix E: Covariant Classical and Quantum Mechanics ( ps file , pdf file)
Appendix F: Spin Networks ( ps file , pdf file)
Appendix G: Black Hole Entropy ( ps file , pdf file)
Appendix H: Loop Quantum Cosmology ( ps file , pdf file)
Appendix I: Functional Analysis ( ps file , pdf file)
Appendix J: Quantisation Schemes ( ps file , pdf file)
Appendix K: The Loop Representation ( ps file , pdf file)
Appendix L: The Hamiltonian Constraint ( ps file , pdf file)
Appendix M: Spin Foms ( ps file , pdf file)
Appendix N: The Master Constraint ( ps file , pdf file)
Appendix O: The Semiclassical Limit ( ps file , pdf file)
Appendix P: Consistent Discrete Classical and Quantum General Relativity ( ps file , pdf file)
Appendix Q: Quantum Gravity Phenenomology ( ps file , pdf file)
Bibliography ( ps file , pdf file)

Volume III: Appendices (drafts)

Appendix A: Physics Glossary ( ps file , pdf file)
Appendix B: Mathematics Glossary ( ps file , pdf file)
Appendix C: Algebraic Quantum Gravity ( ps file , pdf file) (draft version)
Appendix D: Standard QED ( ps file , pdf file) (draft version Aug 2010)
Appendix E: Standard Quantum Field Theory: Functional Integral and Canonical Approach ( ps file , pdf file) (draft version)
Appendix F: Electro-Weak Theory ( ps file , pdf file) (draft version)
Appendix G: Standard Model of Particle Physics ( ps file , pdf file) (not exist yet)
Appendix H: Perturbative Quantum Graviy ( ps file , pdf file) (draft version)
Appendix I: Algebraic Structures ( ps file , pdf file) (draft version)
Appendix J: Category Theory and Topos ( ps file , pdf file) (draft version)
Appendix K: Loop Quantum Gravity Quantisation of String Theory ( ps file , pdf file) (draft version)
Bibliography ( ps file , pdf file)


Self-contained explicit presentation

Quantum Gravity Sourses

Carlo Rovelli's homepage
John Baez's homepage
Jorge Pullin's homepage
Penn State Center of Gravity
Penn State Center of Gravity PhD thesis

General Relativity Sourses

MIT DEPARTMENT OF PHYSICS. General Relativity
Lecture Notes on General Relativity by Sean M. Carroll (with usefull links)
Undergraduate Level Coursework Related to Relativity at UCR
Lecture Notes on General Relativity by Matthias Blau
Introduction to Differential Geometry and General Relativity. Lecture Notes by Stefan Waner
Geometric algebra
Relativity bookmarks